Prodi--Serrin condition for 3D Navier--Stokes equations via one directional derivative of velocity
Autor: | Hui, Chen, Wenjun, Le, Chenyin, Qian |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we consider the conditional regularity of weak solution to the 3D Navier--Stokes equations. More precisely, we prove that if one directional derivative of velocity, say $\partial_3 u,$ satisfies $\partial_3 u \in L^{p_0,1}(0,T; L^{q_0}(\mathbb{R}^3))$ with $\frac{2}{p_{0}}+\frac{3}{q_{0}}=2$ and $\frac{3}{2} |
Databáze: | arXiv |
Externí odkaz: |