Autor: |
Zobaed, Sm, Haque, Md Enamul, Rabby, Md Fazle, Salehi, Mohsen Amini |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
16th IEEE International Conference on Semantic Computing, ICSC'2021 |
Druh dokumentu: |
Working Paper |
Popis: |
Word sense disambiguation (WSD) methods identify the most suitable meaning of a word with respect to the usage of that word in a specific context. Neural network-based WSD approaches rely on a sense-annotated corpus since they do not utilize lexical resources. In this study, we utilize both context and related gloss information of a target word to model the semantic relationship between the word and the set of glosses. We propose SensPick, a type of stacked bidirectional Long Short Term Memory (LSTM) network to perform the WSD task. The experimental evaluation demonstrates that SensPick outperforms traditional and state-of-the-art models on most of the benchmark datasets with a relative improvement of 3.5% in F-1 score. While the improvement is not significant, incorporating semantic relationships brings SensPick in the leading position compared to others. |
Databáze: |
arXiv |
Externí odkaz: |
|