The strong universality of ANRs with a suitable algebraic structure
Autor: | Banakh, Taras |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $M$ be an ANR space and $X$ be a homotopy dense subspace in $M$. Assume that $M$ admits a continuous binary operation $*:M\times M\to M$ such that for every $x,y\in M$ the inclusion $x*y\in X$ holds if and only if $x,y\in X$. Assume also that there exist continuous unary operations $u,v:M\to M$ such that $x=u(x)*v(x)$ for all $x\in M$. Given a $2^\omega$-stable $\mathbf \Pi^0_2$-hereditary weakly $\mathbf \Sigma^0_2$-additive class of spaces $\mathcal C$, we prove that the pair $(M,X)$ is strongly $(\mathbf \Pi^0_1\cap\mathcal C,\mathcal C)$-universal if and only if for any compact space $K\in\mathcal C$, subspace $C\in\mathcal C$ of $K$ and nonempty open set $U\subseteq M$ there exists a continuous map $f:K\to U$ such that $f^{-1}[X]=C$. This characterization is applied to detecting strongly universal Lawson semilattices. Comment: 13 pages |
Databáze: | arXiv |
Externí odkaz: |