Mixing time of fractional random walk on finite fields

Autor: He, Jimmy, Pham, Huy Tuan, Xu, Max Wenqiang
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: We study a random walk on $\mathbb{F}_p$ defined by $X_{n+1}=1/X_n+\varepsilon_{n+1}$ if $X_n\neq 0$, and $X_{n+1}=\varepsilon_{n+1}$ if $X_n=0$, where $\varepsilon_{n+1}$ are independent and identically distributed. This can be seen as a non-linear analogue of the Chung--Diaconis--Graham process. We show that the mixing time is of order $\log p$, answering a question of Chatterjee and Diaconis.
Comment: 17 pages, literature and references updated
Databáze: arXiv