Autor: |
Eric, Delaygue, Tanguy, Rivoal |
Rok vydání: |
2021 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
Every polynomial $P(X)\in \mathbb Z[X]$ satisfies the congruences $P(n+m)\equiv P(n) \mod m$ for all integers $n, m\ge 0$. An integer valued sequence $(a_n)_{n\ge 0}$ is called a pseudo-polynomial when it satisfies these congruences. Hall characterized pseudo-polynomials and proved that they are not necessarily polynomials. A long standing conjecture of Ruzsa says that a pseudo-polynomial $a_n$ is a polynomial as soon as $\limsup_n \vert a_n\vert^{1/n}
|
Databáze: |
arXiv |
Externí odkaz: |
|