Autor: |
Ikeda, MasaHiro, Kitabeppu, Yu, Takai, Yuuki, Uehara, Takato |
Rok vydání: |
2021 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
In the present paper, we introduce a concept of Ricci curvature on hypergraphs for a nonlinear Laplacian. We prove that our definition of the Ricci curvature is a generalization of Lin-Lu-Yau coarse Ricci curvature for graphs to hypergraphs. We also show a lower bound of nonzero eigenvalues of Laplacian, gradient estimate of heat flow, and diameter bound of Bonnet-Myers type for our curvature notion. This research leads to understanding how nonlinearity of Laplacian causes complexity of curvatures. |
Databáze: |
arXiv |
Externí odkaz: |
|