Ricci curvature and quantum geometry

Autor: Carfora, Mauro, Familiari, Francesca
Rok vydání: 2021
Předmět:
Zdroj: International Journal of Geometric Methods in Modern Physics (2020) 2050049 (11 pages)
Druh dokumentu: Working Paper
DOI: 10.1142/S0219887820500498
Popis: We describe a few elementary aspects of the circle of ideas associated with a quantum field theory (QFT) approach to Riemannian Geometry, a theme related to how Riemannian structures are generated out of the spectrum of (random or quantum) fluctuations around a background fiducial geometry. In such a scenario, Ricci curvature with its subtle connections to diffusion, optimal transport, Wasserestein geometry, and renormalization group, features prominently.
Comment: 11 pages
Databáze: arXiv