Ricci curvature and quantum geometry
Autor: | Carfora, Mauro, Familiari, Francesca |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | International Journal of Geometric Methods in Modern Physics (2020) 2050049 (11 pages) |
Druh dokumentu: | Working Paper |
DOI: | 10.1142/S0219887820500498 |
Popis: | We describe a few elementary aspects of the circle of ideas associated with a quantum field theory (QFT) approach to Riemannian Geometry, a theme related to how Riemannian structures are generated out of the spectrum of (random or quantum) fluctuations around a background fiducial geometry. In such a scenario, Ricci curvature with its subtle connections to diffusion, optimal transport, Wasserestein geometry, and renormalization group, features prominently. Comment: 11 pages |
Databáze: | arXiv |
Externí odkaz: |