Popis: |
This article proposes the first discrete-time implementation of Rydberg quantum walk in multi-dimensional spatial space that could ideally simulate different classes of topological insulators. Using distance-selective exchange-interaction between Rydberg excited atoms in an atomic array with dual lattice-constants, the new setup operates both coined and coin-less models of discrete-time quantum walk (DTQW). Here, complicated coupling tessellations are performed by a global laser that exclusively excites the site at the anti-blockade region. The long-range interaction provides a new feature of designing different topologically ordered periodic boundary conditions. Limiting the Rydberg population to two excitations, coherent QW over hundreds of lattice sites and steps are achievable with the current technology. These features would improve the performance of this quantum machine in running the quantum search algorithm over topologically ordered databases as well as diversifying the range of topological insulators that could be simulated. |