On sparse perfect powers

Autor: Moscariello, Alessio
Rok vydání: 2021
Předmět:
Zdroj: Moscow J. Comb. Number Th. 10 (2021) 261-270
Druh dokumentu: Working Paper
DOI: 10.2140/moscow.2021.10.261
Popis: This work is devoted to proving that, given an integer $x \ge 2$, there are infinitely many perfect powers, coprime with $x$, having exactly $k \ge 3$ non-zero digits in their base $x$ representation, except for the case $x=2, k=4$, for which a known finiteness result by Corvaja and Zannier holds.
Comment: 9 pages
Databáze: arXiv