On sparse perfect powers
Autor: | Moscariello, Alessio |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Moscow J. Comb. Number Th. 10 (2021) 261-270 |
Druh dokumentu: | Working Paper |
DOI: | 10.2140/moscow.2021.10.261 |
Popis: | This work is devoted to proving that, given an integer $x \ge 2$, there are infinitely many perfect powers, coprime with $x$, having exactly $k \ge 3$ non-zero digits in their base $x$ representation, except for the case $x=2, k=4$, for which a known finiteness result by Corvaja and Zannier holds. Comment: 9 pages |
Databáze: | arXiv |
Externí odkaz: |