Additive bases and Niven numbers
Autor: | Sanna, Carlo |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Bull. Aust. Math. Soc. 104 (2021) 373-380 |
Druh dokumentu: | Working Paper |
DOI: | 10.1017/S0004972721000186 |
Popis: | Let $g \geq 2$ be an integer. A natural number is said to be a base-$g$ Niven number if it is divisible by the sum of its base-$g$ digits. Assuming Hooley's Riemann Hypothesis, we prove that the set of base-$g$ Niven numbers is an additive basis, that is, there exists a positive integer $C_g$ such that every natural number is the sum of at most $C_g$ base-$g$ Niven numbers. |
Databáze: | arXiv |
Externí odkaz: |