Additive bases and Niven numbers

Autor: Sanna, Carlo
Rok vydání: 2021
Předmět:
Zdroj: Bull. Aust. Math. Soc. 104 (2021) 373-380
Druh dokumentu: Working Paper
DOI: 10.1017/S0004972721000186
Popis: Let $g \geq 2$ be an integer. A natural number is said to be a base-$g$ Niven number if it is divisible by the sum of its base-$g$ digits. Assuming Hooley's Riemann Hypothesis, we prove that the set of base-$g$ Niven numbers is an additive basis, that is, there exists a positive integer $C_g$ such that every natural number is the sum of at most $C_g$ base-$g$ Niven numbers.
Databáze: arXiv