Asymptotic estimates for the wave functions of the Dirac-Coulomb operator and applications

Autor: Cacciafesta, Federico, Séré, Éric, Zhang, Junyong
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper we prove some uniform asymptotic estimates for confluent hypergeometric functions making use of the steepest-descent method. As an application, we obtain Strichartz estimates with loss of angular derivatives for the massless Dirac-Coulomb equation in $3D$.
Comment: 34 pages. Final version to appear in Communications in Partial Differential Equations
Databáze: arXiv