Popis: |
This paper is devoted to studying the extrapolation theory of Rubio de Francia on general function spaces. We present endpoint extrapolation results including $A_1$, $A_p$, and $A_\infty$ extrapolation in the context of Banach function spaces, and also on modular spaces. We also include several applications that can be easily obtained using extrapolation: local decay estimates for various operators, Coifman--Fefferman inequalities that can be used to show some known sharp $A_1$ inequalities, Muckenhoupt--Wheeden and Sawyer's conjectures are also presented for many operators, which go beyond Calder\'{o}n--Zygmund operators. Finally, we obtain two-weight inequalities for Littlewood--Paley operators and Fourier integral operators on weighted Banach function spaces. |