A note on Frobenius-Eilenberg-Moore objects in dagger 2-categories
Autor: | Poklewski-Koziell, Rowan |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We define Frobenius-Eilenberg-Moore objects for a dagger Frobenius monad in an arbitrary dagger 2-category, and extend to the dagger context a well-known universal property of the formal theory of monads. We show that the free completion of a 2-category under Eilenberg-Moore objects extends to the dagger context, provided one is willing to work with such dagger Frobenius monads whose endofunctor part suitably commutes with their unit. Finally, we define dagger lax functors and dagger lax-limits of such functors, and show that Frobenius-Eilenberg-Moore objects are examples of such limits. Comment: 21 pages |
Databáze: | arXiv |
Externí odkaz: |