Upper bounds for Steklov eigenvalues of subgraphs of polynomial growth Cayley graphs
Autor: | Tschanz, Léonard |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Ann Glob Anal Geom 61, 37 (2022) |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s10455-021-09799-w |
Popis: | We study the Steklov problem on a subgraph with boundary $(\Omega,B)$ of a polynomial growth Cayley graph $\Gamma$. We prove that for each $k \in \mathbb{N}$, the $k^{\mbox{th}}$ eigenvalue tends to $0$ proportionally to $1/|B|^{\frac{1}{d-1}}$, where $d$ represents the growth rate of $\Gamma$. The method consists in associating a manifold $M$ to $\Gamma$ and a bounded domain $N \subset M$ to a subgraph $(\Omega, B)$ of $\Gamma$. We find upper bounds for the Steklov spectrum of $N$ and transfer these bounds to $(\Omega, B)$ by discretizing $N$ and using comparison Theorems. Comment: 17 pages |
Databáze: | arXiv |
Externí odkaz: |