Han's conjecture for bounded extensions
Autor: | Cibils, Claude, Lanzilotta, Marcelo, Marcos, Eduardo N., Solotar, Andrea |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.jalgebra.2022.01.022 |
Popis: | Let $B\subset A$ be a left or right bounded extension of finite dimensional algebras. We use the Jacobi-Zariski long nearly exact sequence to show that $B$ satisfies Han's conjecture if and only if $A$ does, regardless if the extension splits or not. We provide conditions ensuring that an extension by arrows and relations is left or right bounded. Finally we give a structure result for extensions of an algebra given by a quiver and admissible relations, and examples of non split left or right bounded extensions. Comment: Updated version. We have replaced the misleading "smooth algebra" by the standard "algebra of finite global dimension". The Appendix is now incorporated in a more direct and shorter form at Section 5 |
Databáze: | arXiv |
Externí odkaz: |