Mixing convergence of LSE for supercritical AR(2) processes with Gaussian innovations using random scaling
Autor: | Barczy, Matyas, Nedényi, Fanni, Pap, Gyula |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove mixing convergence of the least squares estimator of autoregressive parameters for supercritical autoregressive processes of order 2 with Gaussian innovations having real characteristic roots with different absolute values. We use an appropriate random scaling such that the limit distribution is a two-dimensional normal distribution concentrated on a one-dimensional ray determined by the characteristic root having the larger absolute value. Comment: 37 pages |
Databáze: | arXiv |
Externí odkaz: |