Mixing convergence of LSE for supercritical AR(2) processes with Gaussian innovations using random scaling

Autor: Barczy, Matyas, Nedényi, Fanni, Pap, Gyula
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: We prove mixing convergence of the least squares estimator of autoregressive parameters for supercritical autoregressive processes of order 2 with Gaussian innovations having real characteristic roots with different absolute values. We use an appropriate random scaling such that the limit distribution is a two-dimensional normal distribution concentrated on a one-dimensional ray determined by the characteristic root having the larger absolute value.
Comment: 37 pages
Databáze: arXiv