Stability of constant steady states of a chemotaxis model

Autor: Cygan, Szymon, Karch, Grzegorz, Krawczyk, Krzysztof, Wakui, Hiroshi
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: The Cauchy problem for the parabolic--elliptic Keller--Segel system in the whole $n$-dimensional space is studied. For this model, every constant $A \in \mathbb{R}$ is a stationary solution. The main goal of this work is to show that $A < 1$ is a stable steady state while $A > 1$ is unstable. Uniformly local Lebesgue spaces are used in order to deal with solutions that do not decay at spatial variable on the unbounded domain.
Comment: 20 pages
Databáze: arXiv