Stability of constant steady states of a chemotaxis model
Autor: | Cygan, Szymon, Karch, Grzegorz, Krawczyk, Krzysztof, Wakui, Hiroshi |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | The Cauchy problem for the parabolic--elliptic Keller--Segel system in the whole $n$-dimensional space is studied. For this model, every constant $A \in \mathbb{R}$ is a stationary solution. The main goal of this work is to show that $A < 1$ is a stable steady state while $A > 1$ is unstable. Uniformly local Lebesgue spaces are used in order to deal with solutions that do not decay at spatial variable on the unbounded domain. Comment: 20 pages |
Databáze: | arXiv |
Externí odkaz: |