Multiplicative functions supported on the $k$-free integers with small partial sums
Autor: | Aymone, Marco, Bueno, Caio, Medeiros, Kevin |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We provide examples of multiplicative functions $f$ supported on the $k$-free integers such that at primes $f(p)=\pm 1$ and such that the partial sums of $f$ up to $x$ are $o(x^{1/k})$. Further, if we assume the Generalized Riemann Hypothesis, then we can improve the exponent $1/k$: There are examples such that the partial sums up to $x$ are $o(x^{1/(k+\frac{1}{2})+\epsilon})$, for all $\epsilon>0$. This generalizes to the $k$-free integers the results of Aymone, `` A note on multiplicative functions resembling the {M}\"{o}bius function'', J. Number Theory, 212 (2020), pp. 113--121. Comment: 17 pages, added 1 figure and referee comments. To appear in The Ramanujan Journal |
Databáze: | arXiv |
Externí odkaz: |