On the differentiability of solutions to singularly perturbed SPDEs
Autor: | Marinelli, Carlo |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We consider semilinear stochastic evolution equations on Hilbert spaces with multiplicative Wiener noise and linear drift term of the type $A + \varepsilon G$, with $A$ and $G$ maximal monotone operators and $\varepsilon$ a "small" parameter, and study the differentiability of mild solutions with respect to $\varepsilon$. The operator $G$ can be a singular perturbation of $A$, in the sense that its domain can be strictly contained in the domain of $A$. Comment: 11 pages |
Databáze: | arXiv |
Externí odkaz: |