Qualitative properties of H\'enon type equations with exponential nonlinearity

Autor: Guo, Zongming, Huang, Xia, Ye, Dong, Zhou, Feng
Rok vydání: 2020
Předmět:
Zdroj: Nonlinearity 35 (2022) 492-512
Druh dokumentu: Working Paper
DOI: 10.1088/1361-6544/ac3925
Popis: We are interested in the qualitative properties of solutions of the H\'enon type equations with exponential nonlinearity. First, we classify the stable at infinity solutions of $\Delta u +|x|^\alpha e^u=0$ in $\mathbb{R}^N$, which gives a complete answer to the problem considered in [Wang-Ye]. Secondly, existence and precise asymptotic behaviors of entire radial solutions to $\Delta^2 u=|x|^{\alpha} e^u$ are obtained. Then we classify the stable and stable at infinity radial solutions to $\Delta^2 u=|x|^{\alpha} e^u$ in any dimension.
Databáze: arXiv