Continuous Wavelet Frames on the Sphere: The Group-Theoretic Approach Revisited

Autor: Dahlke, S., De Mari, F., De Vito, E., Hansen, M., Hasannasab, M., Quellmalz, M., Steidl, G., Teschke, G.
Rok vydání: 2020
Předmět:
Zdroj: Applied and Computational Harmonic Analysis, Volume 56, January 2022, Pages 123-149
Druh dokumentu: Working Paper
DOI: 10.1016/j.acha.2021.08.003
Popis: In \cite{AV99}, Antoine and Vandergheynst propose a group-theoretic approach to continuous wavelet frames on the sphere. The frame is constructed from a single so-called admissible function by applying the unitary operators associated to a representation of the Lorentz group, which is square-integrable modulo the nilpotent factor of the Iwasawa decomposition. We prove necessary and sufficient conditions for functions on the sphere, which ensure that the corresponding system is a frame. We strengthen a similar result in \cite{AV99} by providing a complete and detailed proof.
Databáze: arXiv