Autor: |
Dahlke, S., De Mari, F., De Vito, E., Hansen, M., Hasannasab, M., Quellmalz, M., Steidl, G., Teschke, G. |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Applied and Computational Harmonic Analysis, Volume 56, January 2022, Pages 123-149 |
Druh dokumentu: |
Working Paper |
DOI: |
10.1016/j.acha.2021.08.003 |
Popis: |
In \cite{AV99}, Antoine and Vandergheynst propose a group-theoretic approach to continuous wavelet frames on the sphere. The frame is constructed from a single so-called admissible function by applying the unitary operators associated to a representation of the Lorentz group, which is square-integrable modulo the nilpotent factor of the Iwasawa decomposition. We prove necessary and sufficient conditions for functions on the sphere, which ensure that the corresponding system is a frame. We strengthen a similar result in \cite{AV99} by providing a complete and detailed proof. |
Databáze: |
arXiv |
Externí odkaz: |
|