The $\thera$-congruent numbers elliptic curves via a Fermat-type theorem

Autor: Salami, Sajad, Zargar, Arman Shamsi
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: A positive integer $N$ is called a $\theta$-congruent number if there is a $\ta$-triangle $(a,b,c)$ with rational sides for which the angle between $a$ and $b$ is equal to $\theta$ and its area is $N \sqrt{r^2-s^2}$, where $\theta \in (0, \pi)$, $\cos(\theta)=s/r$, and $0 \leq |s|Comment: 13 pages
Databáze: arXiv