The $\thera$-congruent numbers elliptic curves via a Fermat-type theorem
Autor: | Salami, Sajad, Zargar, Arman Shamsi |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | A positive integer $N$ is called a $\theta$-congruent number if there is a $\ta$-triangle $(a,b,c)$ with rational sides for which the angle between $a$ and $b$ is equal to $\theta$ and its area is $N \sqrt{r^2-s^2}$, where $\theta \in (0, \pi)$, $\cos(\theta)=s/r$, and $0 \leq |s| |
Databáze: | arXiv |
Externí odkaz: |