Stability property and Dirichlet problem for translating solitons

Autor: Ma, Li, Miquel, Vicente
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper, we prove that the infimum of the mean curvature is zero for a translating solitons of hypersurface in $\re^{n+k}$. We give some conditions under which a complete hypersurface translating soliton is stable. We show that if the norm of its mean curvature is less than one, then the weighted volume may have exponent growth. We also study the Dirichlet problem for graphic translating solitons in higher codimensions.
Comment: 15 pages
Databáze: arXiv