Lattice gauge equivariant convolutional neural networks
Autor: | Favoni, Matteo, Ipp, Andreas, Müller, David I., Schuh, Daniel |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Phys.Rev.Lett. 128 (2022) 3, 032003 |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevLett.128.032003 |
Popis: | We propose Lattice gauge equivariant Convolutional Neural Networks (L-CNNs) for generic machine learning applications on lattice gauge theoretical problems. At the heart of this network structure is a novel convolutional layer that preserves gauge equivariance while forming arbitrarily shaped Wilson loops in successive bilinear layers. Together with topological information, for example from Polyakov loops, such a network can in principle approximate any gauge covariant function on the lattice. We demonstrate that L-CNNs can learn and generalize gauge invariant quantities that traditional convolutional neural networks are incapable of finding. Comment: letter: 6 pages, 5 figures; supplementary material: 14 pages, 4 figures; replaced some figures, added supplementary material |
Databáze: | arXiv |
Externí odkaz: |