Hilbert schemes, Verma modules and spectral functions of hyperbolic geometry with application to quantum invariants
Autor: | Bytsenko, A. A., Chaichian, M., Gonçalves, A. E. |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Int.J.Mod.Phys. A34 (2019) no.11, 1930060 |
Druh dokumentu: | Working Paper |
DOI: | 10.1142/S0217751X19300060 |
Popis: | In this article we exploit Ruelle-type spectral functions and analyze the Verma module over Virasoro algebra, boson-fermion correspondence, the analytic torsion, the Chern-Simons and $\eta$ invariants, as well as the generation function associated to dimensions of the Hochschild homology of the crossed product $\mathbb{C}[S_n]\ltimes \mathcal{A}^{\otimes n}$ ($\mathcal{A}$ is the $q$-Weyl algebra). After analysing the Chern-Simons and $\eta$ invariants of Dirac operators by using irreducible $SU(n)$-flat connections on locally symmetric manifolds of non-positive section curvature, we describe the exponential action for the Chern-Simons theory. Comment: 28 pages |
Databáze: | arXiv |
Externí odkaz: |