Hilbert schemes, Verma modules and spectral functions of hyperbolic geometry with application to quantum invariants

Autor: Bytsenko, A. A., Chaichian, M., Gonçalves, A. E.
Rok vydání: 2020
Předmět:
Zdroj: Int.J.Mod.Phys. A34 (2019) no.11, 1930060
Druh dokumentu: Working Paper
DOI: 10.1142/S0217751X19300060
Popis: In this article we exploit Ruelle-type spectral functions and analyze the Verma module over Virasoro algebra, boson-fermion correspondence, the analytic torsion, the Chern-Simons and $\eta$ invariants, as well as the generation function associated to dimensions of the Hochschild homology of the crossed product $\mathbb{C}[S_n]\ltimes \mathcal{A}^{\otimes n}$ ($\mathcal{A}$ is the $q$-Weyl algebra). After analysing the Chern-Simons and $\eta$ invariants of Dirac operators by using irreducible $SU(n)$-flat connections on locally symmetric manifolds of non-positive section curvature, we describe the exponential action for the Chern-Simons theory.
Comment: 28 pages
Databáze: arXiv