Building LEGO Using Deep Generative Models of Graphs

Autor: Thompson, Rylee, Ghalebi, Elahe, DeVries, Terrance, Taylor, Graham W.
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: Generative models are now used to create a variety of high-quality digital artifacts. Yet their use in designing physical objects has received far less attention. In this paper, we advocate for the construction toy, LEGO, as a platform for developing generative models of sequential assembly. We develop a generative model based on graph-structured neural networks that can learn from human-built structures and produce visually compelling designs. Our code is released at: https://github.com/uoguelph-mlrg/GenerativeLEGO.
Comment: NeurIPS 2020 ML4eng workshop paper
Databáze: arXiv