Fermat's Little Theorem and Euler's Theorem in a class of rings
Autor: | Hernandez, Fernanda D. de Melo, Melo, César A. Hernández, Tapia-Recillas, Horacio |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Considering $\mathbb{Z}_n$ the ring of integers modulo $n$, the classical Fermat-Euler theorem establishes the existence of a specific natural number $\varphi(n)$ satisfying the following property: $ x^{\varphi(n)}=1%\hspace{1.0cm}\text{for all}\hspace{0.2cm}x\in \mathbb{Z}_n^*, $ for all $x$ belonging to the group of units of $\mathbb{Z}_n$. In this manuscript, this result is extended to a class of rings that satisfies some mild conditions. Comment: arXiv admin note: text overlap with arXiv:1911.07743 |
Databáze: | arXiv |
Externí odkaz: |