A modified Susceptible-Infected-Recovered model for observed under-reported incidence data

Autor: Trejo, Imelda, Hengartner, Nicolas
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: Fitting Susceptible-Infected-Recovered (SIR) models to incidence data is problematic when not all infected individuals are reported. Assuming an underlying SIR model with general but known distribution for the time to recovery, this paper derives the implied differential-integral equations for observed incidence data when a fixed fraction of newly infected individuals are not observed. The parameters of the resulting system of differential equations are identifiable. Using these differential equations, we develop a stochastic model for the conditional distribution of current disease incidence given the entire past history of reported cases. We estimate the model parameters using Bayesian Markov Chain Monte-Carlo sampling of the posterior distribution. We use our model to estimate the transmission rate and fraction of asymptomatic individuals for the current Coronavirus 2019 outbreak in eight American Countries: the United States of America, Brazil, Mexico, Argentina, Chile, Colombia, Peru, and Panama, from January 2020 to May 2021. Our analysis reveals that consistently, about 40-60% of the infections were not observed in the American outbreaks. The two exception are Mexico and Peru, with acute under-reporting in Mexico.
Databáze: arXiv