Consistent regression of biophysical parameters with kernel methods
Autor: | Díaz, Emiliano, Pérez-Suay, Adrián, Laparra, Valero, Camps-Valls, Gustau |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | This paper introduces a novel statistical regression framework that allows the incorporation of consistency constraints. A linear and nonlinear (kernel-based) formulation are introduced, and both imply closed-form analytical solutions. The models exploit all the information from a set of drivers while being maximally independent of a set of auxiliary, protected variables. We successfully illustrate the performance in the estimation of chlorophyll content. Comment: arXiv admin note: substantial text overlap with arXiv:1710.05578 |
Databáze: | arXiv |
Externí odkaz: |