$SU(1,1)$ covariant $s$-parametrized maps

Autor: Klimov, Andrei B., Seyfarth, Ulrich, de Guise, Hubert, Sanchez-Soto, L. L.
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1088/1751-8121/abd7b4
Popis: We propose a practical recipe to compute the ${s}$-parametrized maps for systems with $SU(1,1)$ symmetry using a connection between the ${Q}$ and ${P} $ symbols through the action of an operator invariant under the group. The particular case of the self-dual (Wigner) phase-space functions, defined on the upper sheet of the two-sheet hyperboloid (or, equivalently, inside the Poincar\'{e} disc) are analyzed.
Comment: 18 pages, 3 figures. Comments welcome!
Databáze: arXiv