Algebraic approximation and the decomposition theorem for K\'ahler Calabi-Yau varieties
Autor: | Bakker, Benjamin, Guenancia, Henri, Lehn, Christian |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We extend the decomposition theorem for numerically $K$-trivial varieties with log terminal singularities to the K\"ahler setting. Along the way we prove that all such varieties admit a strong locally trivial algebraic approximation, thus completing the numerically $K$-trivial case of a conjecture of Campana and Peternell. Comment: v2: Minor inaccuracies corrected, main results unchanged. v3: Exposition improved, final version, to appear in Invent. Math |
Databáze: | arXiv |
Externí odkaz: |