$\mathbb{Z}_2$-graded polynomial identities for the Jordan algebra of $2\times 2$ upper triangular matrices
Autor: | Gonçalves, Dimas J., Salomão, Mateus E. |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $K$ be a field (finite or infinite) of char$(K)\neq 2$ and let $UT_n=UT_n(K)$ be the $n\times n$ upper triangular matrix algebra over $K$. If $\cdot $ is the usual product on $UT_n$ then with the new product $a\circ b=(1/2)(a\cdot b +b\cdot a)$ we have that $UT_n$ is a Jordan algebra, denoted by $UJ_n=UJ_n(K)$. In this paper, we describe the set of all $\mathbb{Z}_2$-graded polynomial identities of $UJ_2$ with any nontrivial $\mathbb{Z}_2$-grading. Moreover, we describe a linear basis for the corresponding relatively free $\mathbb{Z}_2$-graded algebra. Comment: 29 pages |
Databáze: | arXiv |
Externí odkaz: |