Sharp convergence for sequences of nonelliptic Schr\'{o}dinger means
Autor: | Li, Wenjuan, Wang, Huiju, Yan, Dunyan |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We consider pointwise convergence of nonelliptic Schr\"{o}dinger means $e^{it_{n}\square}f(x)$ for $f \in H^{s}(\mathbb{R}^{2})$ and decreasing sequences $\{t_{n}\}_{n=1}^{\infty}$ converging to zero, where \[{e^{it_{n}\square }}f\left( x \right): = \int_{{\mathbb{R}^2}} {{e^{i\left( {x \cdot \xi + t_{n}{{ \xi_{1}\xi_{2} }}} \right)}}\widehat{f}} \left( \xi \right)d\xi .\] We prove that when $0 |
Databáze: | arXiv |
Externí odkaz: |