Bershadsky-Polyakov vertex algebras at positive integer levels and duality
Autor: | Adamovic, Drazen, Kontrec, Ana |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study the simple Bershadsky-Polyakov algebra $\mathcal W_k = \mathcal{W}_k(sl_3,f_{\theta})$ at positive integer levels and classify their irreducible modules. In this way we confirm the conjecture from arXiv:1910.13781. Next, we study the case $k=1$. We discover that this vertex algebra has a Kazama-Suzuki-type dual isomorphic to the simple afine vertex superalgebra $L_{k'} (osp(1 \vert 2))$ for $k'=-5/4$. Using the free-field realization of $L_{k'} (osp(1 \vert 2))$ from arXiv:1711.11342, we get a free-field realization of $\mathcal W_k$ and their highest weight modules. In a sequel, we plan to study fusion rules for $\mathcal W_k$. Comment: 24 pages |
Databáze: | arXiv |
Externí odkaz: |