Mathematical comparison of classical and quantum mechanisms in optimization under local differential privacy
Autor: | Yoshida, Yuuya |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $\varepsilon>0$. An $n$-tuple $(p_i)_{i=1}^n$ of probability vectors is called $\varepsilon$-differentially private ($\varepsilon$-DP) if $e^\varepsilon p_j-p_i$ has no negative entries for all $i,j=1,\ldots,n$. An $n$-tuple $(\rho_i)_{i=1}^n$ of density matrices is called classical-quantum $\varepsilon$-differentially private (CQ $\varepsilon$-DP) if $e^\varepsilon\rho_j-\rho_i$ is positive semi-definite for all $i,j=1,\ldots,n$. Denote by $\mathrm{C}_n(\varepsilon)$ the set of all $\varepsilon$-DP $n$-tuples, and by $\mathrm{CQ}_n(\varepsilon)$ the set of all CQ $\varepsilon$-DP $n$-tuples. By considering optimization problems under local differential privacy, we define the subset $\mathrm{EC}_n(\varepsilon)$ of $\mathrm{CQ}_n(\varepsilon)$ that is essentially classical. Roughly speaking, an element in $\mathrm{EC}_n(\varepsilon)$ is the image of $(p_i)_{i=1}^n\in\mathrm{C}_n(\varepsilon)$ by a completely positive and trace-preserving linear map (CPTP map). In a preceding study, it is known that $\mathrm{EC}_2(\varepsilon)=\mathrm{CQ}_2(\varepsilon)$. In this paper, we show that $\mathrm{EC}_n(\varepsilon)\not=\mathrm{CQ}_n(\varepsilon)$ for every $n\ge3$, and estimate the difference between $\mathrm{EC}_n(\varepsilon)$ and $\mathrm{CQ}_n(\varepsilon)$ in a certain manner. Comment: 26 pages |
Databáze: | arXiv |
Externí odkaz: |