Classical pretzel knots and left orderability
Autor: | Khan, Arafat, Tran, Anh T. |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We consider the classical pretzel knots $P(a_1, a_2, a_3)$, where $a_1, a_2, a_3$ are positive odd integers. By using continuous paths of elliptic $\mathrm{SL}_2(\mathbb R)$-representations, we show that (i) the 3-manifold obtained by $\frac{m}{l}$-surgery on $P(a_1, a_2, a_3)$ has left orderable fundamental group if $\frac{m}{l} < 1$, and (ii) the $n^{\mathrm{th}}$-cyclic branched cover of $P(a_1, a_2, a_3)$ has left orderable fundamental group if $n > 2\pi / \arccos(1-2/(1+a_1 a_2 + a_2 a_3 + a_3 a_1))$. Comment: 12 pages, 1 figure |
Databáze: | arXiv |
Externí odkaz: |