Convergence problem of Schr\'odinger equation in Fourier-Lebesgue spaces with rough data and random data
Autor: | Yan, Xiangqian, Zhao, Yajuan, Yan, Wei |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we consider the convergence problem of Schr\"odinger equation. Firstly, we show the almost everywhere pointwise convergence of Schr\"odinger equation in Fourier-Lebesgue spaces $\hat{H}^{\frac{1}{p},\frac{p}{2}}(\mathbb{R})(4\leq p<\infty),$ $\hat{H}^{\frac{3 s_{1}}{p},\frac{2p}{3}}(\mathbb{R}^2)(s_{1}>\frac{1}{3},3\leq p<\infty),$ $\hat{H}^{\frac{2 s_{1}}{p},p}(\mathbb{R}^n)(s_{1}>\frac{n}{2(n+1)},2\leq p<\infty,n\geq3)$ with rough data. Secondly, we show that the maximal function estimate related to one Schr\"odinger equation can fail with data in $\hat{H}^{s,\frac{p}{2}}(\mathbb{R})(s<\frac{1}{p})$. Finally, we show the stochastic continuity of Schr\"odinger equation with random data in $\hat{L}^{r}(\mathbb{R}^n)(2\leq r<\infty)$ almost surely. The main ingredients are Lemmas 2.4, 2.5, 3.2-3.4. Comment: page 15 |
Databáze: | arXiv |
Externí odkaz: |