Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature
Autor: | Kolb, Martin, Weich, Tobias, Wolf, Lasse Lennart |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | The kinetic Brownian motion on the sphere bundle of a Riemannian manifold $M$ is a stochastic process that models a random perturbation of the geodesic flow. If $M$ is a orientable compact constantly curved surface, we show that in the limit of infinitely large perturbation the $L^2$-spectrum of the infinitesimal generator of a time rescaled version of the process converges to the Laplace spectrum of the base manifold. Comment: This is a shortened version of arXiv:1909.06183 but generalized to all constant curvature surfaces instead of negatively curved surfaces |
Databáze: | arXiv |
Externí odkaz: |