Upper bounds for Betti numbers from constraints on the Hilbert function

Autor: White, Jay
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: We describe an algorithm for finding sharp upper bounds for the total Betti numbers of a saturated ideal given certain constraints on its Hilbert function. This algorithm is implemented in the Macaulay2 package, MaxBettiNumbers, along with variations that produce ideals with maximal total Betti numbers.
Comment: 9 pages, 1 figure, submitted to the Journal of Software for Algebra and Geometry
Databáze: arXiv