On properness of K-moduli spaces and optimal degenerations of Fano varieties
Autor: | Blum, Harold, Halpern-Leistner, Daniel, Liu, Yuchen, Xu, Chenyang |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We establish an algebraic approach to prove the properness of moduli spaces of K-polystable Fano varieties and reduce the problem to a conjecture on destabilizations of K-unstable Fano varieties. Specifically, we prove that if the stability threshold of every K-unstable Fano variety is computed by a divisorial valuation, then such K-moduli spaces are proper. The argument relies on studying certain optimal destabilizing test configurations and constructing a Theta-stratification on the moduli stack of Fano varieties. Comment: v2: to appear in Selecta Math |
Databáze: | arXiv |
Externí odkaz: |