IMEX Runge-Kutta Parareal for Non-Diffusive Equations

Autor: Buvoli, Tommaso, Minion, Michael L.
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: Parareal is a widely studied parallel-in-time method that can achieve meaningful speedup on certain problems. However, it is well known that the method typically performs poorly on non-diffusive equations. This paper analyzes linear stability and convergence for IMEX Runge-Kutta Parareal methods on non-diffusive equations. By combining standard linear stability analysis with a simple convergence analysis, we find that certain Parareal configurations can achieve parallel speedup on non-diffusive equations. These stable configurations all posses low iteration counts, large block sizes, and a large number of processors. Numerical examples using the nonlinear Schrodinger equation demonstrate the analytical conclusions.
Databáze: arXiv