On non-gradient $(m,\rho)$-quasi-Einstein contact metric manifolds
Autor: | Patra, Dhriti Sundar, Rovenski, Vladimir |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Many authors have studied Ricci solitons and their analogs within the framework of (almost) contact geometry. In this article, we thoroughly study the $(m,\rho)$-quasi-Einstein structure on a contact metric manifold. First, we prove that if a $K$-contact or Sasakian manifold $M^{2n+1}$ admits a closed $(m,\rho)$-quasi-Einstein structure, then it is an Einstein manifold of constant scalar curvature $2n(2n+1)$, and for the particular case -- a non-Sasakian $(k,\mu)$-contact structure -- it is locally isometric to the product of a Euclidean space $\RR^{n+1}$ and a sphere $S^n$ of constant curvature $4$. Next, we prove that if a compact contact or $H$-contact metric manifold admits an $(m,\rho)$-quasi-Einstein structure, whose potential vector field $V$ is collinear to the Reeb vector field, then it is a $K$-contact $\eta$-Einstein manifold. Comment: 12 pages |
Databáze: | arXiv |
Externí odkaz: |