On explicit estimates for $S(t)$, $S_1(t)$, and $\zeta(1/2+\mathrm{i}t)$ under the Riemann Hypothesis
Autor: | Simonič, Aleksander |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.jnt.2021.05.014 |
Popis: | Assuming the Riemann Hypothesis, we provide explicit upper bounds for moduli of $S(t)$, $S_1(t)$, and $\zeta\left(1/2+\mathrm{i}t\right)$ while comparing them with recently proven unconditional ones. As a corollary we obtain a conditional explicit bound on gaps between consecutive zeros of the Riemann zeta-function. Comment: 21 pages |
Databáze: | arXiv |
Externí odkaz: |