Autor: |
Coll, Vincent E., Mayers, Nicholas, Russoniello, Nicholas, Salgado, Gil |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Pacific J. Math. 320 (2022) 45-60 |
Druh dokumentu: |
Working Paper |
DOI: |
10.2140/pjm.2022.320.45 |
Popis: |
A ($2k+1$)$-$dimensional contact Lie algebra is one which admits a one-form $\varphi$ such that $\varphi \wedge (d\varphi)^k\ne0$. Such algebras have index one, but this is not generally a sufficient condition. Here we show that index-one type-A seaweed algebras are necessarily contact. Examples, together with a method for their explicit construction, are provided. |
Databáze: |
arXiv |
Externí odkaz: |
|