Joint value-distribution of shifts of the Riemann zeta-function
Autor: | Pańkowski, Łukasz |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove that any non-zero complex values $z_1,\ldots,z_n$ can be approximated by the following integral shifts of the Riemann zeta-function $\zeta(s+id_1\tau),\ldots,\zeta(s+id_n\tau)$ for infinitely many $\tau$, provided $d_1,\ldots,d_n\in\mathbb{N}$ and $s$ is a fixed complex number lying in the right open half of the critical strip. Comment: 12 pages |
Databáze: | arXiv |
Externí odkaz: |