The {\L}ojasiewicz exponent of non-degenerate surface singularities
Autor: | Brzostowski, S., Krasiński, T., Oleksik, G. |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $f$ be an isolated singularity at the origin of $\mathbb{C}^n$. One of many invariants that can be associated with $f$ is its {\L}ojasiewicz exponent $\mathcal{L}_0 (f)$, which measures, to some extent, the topology of $f$. We give, for generic surface singularities $f$, an effective formula for $\mathcal{L}_0 (f)$ in terms of the Newton polyhedron of $f$. This is a realization of one of Arnold's postulates. Comment: 16 pages, 3 figures |
Databáze: | arXiv |
Externí odkaz: |