Distinct Distances with $\ell_p$ Spaces

Autor: AlQady, Moaaz, Chabot, Riley, Dudarov, William, Ge, Linus, Juvekar, Mandar, Kundeti, Srikanth, Kundu, Neloy, Lu, Kevin, Moreno, Yago, Peng, Sibo, Speas, Samuel, Starzycka, Julia, Steinthal, Henry, Vitko, Anastasiia
Rok vydání: 2020
Předmět:
Zdroj: Computational Geometry Vol. 100, January 2022, 101785
Druh dokumentu: Working Paper
DOI: 10.1016/j.comgeo.2021.101785
Popis: We study Erd\H os's distinct distances problem under $\ell_p$ metrics with integer $p$. We improve the current best bound for this problem from $\Omega(n^{4/5})$ to $\Omega(n^{6/7-\epsilon})$, for any $\epsilon>0$. We also characterize the sets that span an asymptotically minimal number of distinct distances under the $\ell_1$ and $\ell_\infty$ metrics.
Comment: 15 pages, 4 figures
Databáze: arXiv