Rational homotopy type of mapping spaces via cohomology algebras

Autor: Xie, Sang, Liu, Jian, Liu, Xiugui
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper, we show that for finite $CW$-complexes $X$ and two-stage space $Y$ (for example $n$-spheres $S^n$, homogeneous spaces and $F_0$-spaces), the rational homotopy type of $\map(X, Y)$ is determined by the cohomology algebra $H^*(X; \Q)$ and the rational homotopy type of $Y$. From this, we deduce the existence of H-structures on a component of the mapping space $\map(X, Y)$, assuming the cohomology algebras of $X$ and $Y$ are isomorphism. Finally, we will show that $\map(X, Y; f)\simeq\map(X, Y; f')$ if the corresponding \emph{Maurer-Cartan elements} are connected by an algebra automorphism of $H^\ast(X, \Q)$.
Databáze: arXiv