KLR and Schur algebras for curves and semi-cuspidal representations
Autor: | Maksimau, Ruslan, Minets, Alexandre |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Int. Math. Res. Not. 2023, No. 8, 6976-7052 (2023) |
Druh dokumentu: | Working Paper |
DOI: | 10.1093/imrn/rnac055 |
Popis: | Given a smooth curve $C$, we define and study analogues of KLR algebras and quiver Schur algebras, where quiver representations are replaced by torsion sheaves on $C$. In particular, they provide a geometric realization for certain affinized symmetric algebras. When $C=\mathbb P^1$, a version of curve Schur algebra turns out to be Morita equivalent to the imaginary semi-cuspidal category of the Kronecker quiver in any characteristic. As a consequence, we argue that one should not expect to have a reasonable theory of parity sheaves for affine quivers. Comment: 51 pages |
Databáze: | arXiv |
Externí odkaz: |