Uniqueness of the 2D Euler equation on a corner domain with non-constant vorticity around the corner
Autor: | Agrawal, Siddhant, Nahmod, Andrea R. |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We consider the 2D incompressible Euler equation on a corner domain $\Omega$ with angle $\nu\pi$ with $\frac{1}{2}<\nu<1$. We prove that if the initial vorticity $\omega_0 \in L^{1}(\Omega)\cap L^{\infty}(\Omega)$ and if $\omega_0$ is non-negative and supported on one side of the angle bisector of the domain, then the weak solutions are unique. This is the first result which proves uniqueness when the velocity is far from Lipschitz and the initial vorticity is nontrivial around the boundary. Comment: 41 pages. Published in Nonlinearity |
Databáze: | arXiv |
Externí odkaz: |